Privacy-preserving logistic regression

نویسندگان

  • Kamalika Chaudhuri
  • Claire Monteleoni
چکیده

This paper addresses the important tradeoff between privacy and learnability, when designing algorithms for learning from private databases. We focus on privacy-preserving logistic regression. First we apply an idea of Dwork et al. [6] to design a privacy-preserving logistic regression algorithm. This involves bounding the sensitivity of regularized logistic regression, and perturbing the learned classifier with noise proportional to the sensitivity. We then provide a privacy-preserving regularized logistic regression algorithm based on a new privacy-preserving technique: solving a perturbed optimization problem. We prove that our algorithm preserves privacy in the model due to [6]. We provide learning guarantees for both algorithms, which are tighter for our new algorithm, in cases in which one would typically apply logistic regression. Experiments demonstrate improved learning performance of our method, versus the sensitivity method. Our privacy-preserving technique does not depend on the sensitivity of the function, and extends easily to a class of convex loss functions. Our work also reveals an interesting connection between regularization and privacy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PrivLogit: Efficient Privacy-preserving Logistic Regression by Tailoring Numerical Optimizers

Safeguarding privacy in machine learning is highly desirable, especially in collaborative studies across many organizations. Privacy-preserving distributed machine learning (based on cryptography) is popular to solve the problem. However, existing cryptographic protocols still incur excess computational overhead. Here, we make a novel observation that this is partially due to naive adoption of ...

متن کامل

Privacy-Preserving Logistic Regression

Logistic regression is an important statistical analysis methods widely used in research fields, including health, business and government. On the other hand preserving data privacy is a crucial aspect in every information system. Many privacy-preserving protocols have been proposed for different statistical techniques, with various data distributions, owners and users. In this paper, we propos...

متن کامل

Privacy-Preserving Maximum Likelihood Estimation for Distributed Data

Recent technological advances enable the collection of huge amounts of data. Commonly, these data are generated, stored, and owned by multiple entities that are unwilling to cede control of their data. This distributed environment requires statistical tools that can produce correct results while preserving data privacy. Privacy-preserving protocols have been proposed to solve specific statistic...

متن کامل

Differentially Private Empirical Risk Minimization

Privacy-preserving machine learning algorithms are crucial for the increasingly common setting in which personal data, such as medical or financial records, are analyzed. We provide general techniques to produce privacy-preserving approximations of classifiers learned via (regularized) empirical risk minimization (ERM). These algorithms are private under the ε-differential privacy definition du...

متن کامل

Preserving Privacy in Data Mining using hybrid of Auto-Associative Neural Network and Particle Swarm Optimization: An application for bankruptcy prediction in banks

Data mining has emerged as a significant technology for gaining knowledge from vast quantities of business data, financial data, networked data and medical data. The goal of data mining is approaches are to develop generalized knowledge rather than identify specific information against specific individual. There has been growing concern that use of this technology is violating individual privac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008